UTILITY FUNCTIONS AND THE 'lin' OPERATION FOR CONVEX SETS

BY VICTOR KLEE

ABSTRACT

For an \aleph_0 -dimensional space E of alternatives, there is described a preference relation \succeq such that (in a very strong sense) no information about \succeq can be expressed in terms of finite-dimensional linear transformations of E. The same construction shows that for each countable ordinal β , E contains a convex cone E such that $\lim_{\beta \to 0} K = E$ but $\lim_{\alpha \to 0} K \neq E$ for $\alpha < \beta$.

This note contributes to utility theory by shrapening a recent example of Kannai [5] and Perles, and to the geometry of infinite-dimensional convex sets by settling a problem raised in [11] concerning the iteration of the 'lin' operation. The reduction of the first matter to the second is described in Section 1 below, and the actual construction appears in Section 2. Section 3 mentions two unsolved problems.

- 1. Utility theory. An \aleph -dimensional preference relation is a transitive and reflexive relation \succeq on an \aleph -dimensional real linear space E such that the following conditions are satisfied for all x, y and $z \in E$:
 - (1) if $x \geq y$, then $x + z \geq y + z$;
 - (2) if $x \geq y$ and $\lambda > 0$, then $\lambda x \geq \lambda y$;
 - (3) if $x \geq kz$ for all positive integers k, then not z > 0.

The preference relation is called *pure* provided it satisfies the following condition:

(4) if
$$x \sim 0$$
, then $x = 0$.

Here $x \succ y$ (x is preferred to y) means that $x \gtrsim y$ but not $y \gtrsim x$, while $x \sim y$ (x is indifferent to y) means that $x \gtrsim y$ and $y \gtrsim x$.

A convex cone is a set K such that $K + K \subset K$ and $]0, \infty [K \subset K]$. Now consider a relation \succeq on a (real) linear space, and let $S = \{x : x \succeq 0\}$. If the relation \succeq is transitive and reflexive and satisfies conditions (1) and (2), then S is a convex cone with $0 \in S$, and

(5)
$$x \geq y$$
 if and only if $x - y \in S$.

Conversely, if S is a convex cone with $0 \in S$ and the relation \geq is defined by (5), then \geq is transitive and reflexive and satisfies conditions (1) and (2).

Received September 29, 1964.

For a subset X of a linear space, $\lim X$ or $\lim^1 X$ will denote the union of X with the set of all endpoints of line segments contained in X. We then define $\lim^2 X = \ln(\ln^1 X), \dots, \ln^{\beta} X = \ln(\ln^{\beta-1} X)$ if $\beta - 1$ exists, and $\ln^{\beta} X = \bigcup_{\alpha < \beta} \ln^{\alpha} X$ if β is a limit ordinal.

PROPOSITION. Suppose that S is a convex cone in a linear space E, with $0 \in S$. Let the relation \geq be defined by (7), and let $T = \{x : x > 0\}$. Then the following four assertions are equivalent:

- (i) the relation ≥ satisfies condition (3);
- (ii) $(-S) \cap \lim S \subset S$;
- (iii) $(-T) \cap \lim S = \emptyset$;
- (iv) $(-T) \cap \lim T = \emptyset$.

Proof. Suppose first that condition (3) holds, and consider an arbitrary point $x \in -S \cap \text{lin } S$. From the definition of lin S it follows that $]x,s] \subset S$ for some $s \in S$, whence for each positive integer k we have $(1-(1/k))x+(1/k)s \in S$. But this implies that $(s-x)+kx \in S$, whence $s-x \geq k(-x)$ and consequently (by (3)) not -x > 0. But $-x \geq 0$ (for $-x \in S$), and thus not -x > 0 implies $-x \sim 0$, whence $x \sim 0$ and $x \in S$. Thus (i) implies (ii).

If (ii) holds, then for each $x \in (-T) \cap \lim S$ we have -x > 0 (since $x \in -T$) and $x \ge 0$ (since $x \in S$ by (ii)), whence $-x > 0 \ge -x$. But this is impossible, so no such x exists and (ii) implies (iii). Obviously (iii) implies (iv).

Finally, let us suppose that (iv) holds, and consider points x and z of E such that $x \geq kz$ for all positive integers k. For all k, we have $x \geq (k+1)z$ and hence $x - kz \geq z$. Suppose z > 0, whence x - kz > 0 and (since $]0, \infty[T \subset T)$ $\lambda x - \mu z \in T$ for all $\lambda > 0 < \mu$. In particular, $\lambda x + (1 - \lambda)(-z) \in T$ for all $\lambda \in]0, 1[$, and consequently $-z \in \lim T$. Thus $-z \in (-T) \cap \lim T$, and since this is impossible by (iv) it follows that not z > 0. Hence (iv) implies (i) and the proof is complete.

An *n*-dimensional utility function for the preference relation \geq is a linear transformation v of E onto \Re^n which satisfies the following two conditions for all $x, y \in E$:

- (6) if $x \geq y$, then $v(x) \geq v(y)$;
- (7) if x > y, then v(x) > v(y).

Here the lexicographic ordering is employed in R"[3].

When E is finite-dimensional (and conditions (1) and (2) are assumed), condition (3) guarantees the existence of a numerical utility function (Aumann [1]). This can be traced to the fact that finite-dimensionality of E is equivalent to idempotency of the 'lin' operation for convex sets [6]. When E is finite-dimensional, $\lim^2 X = \lim X$ for each convex $X \subset E$, and $\lim X$ is merely the closure of X in the natural topology of E. In the infinite-dimensional case, condition (3) loses much

of its significance and must be replaced by explicit closure conditions in order to assure the existence of utility functions [5, 12].

Now suppose that dim $E = \mathbf{x}_0$, and let \succeq be a relation on E satisfying condition (3). An example of Kannai [5] and Perles shows that the weak archimedean principle (3) (or, equivalently, the requirement that $(-T) \cap \lim^1 T = \emptyset$) is not sufficient for the existence of a utility function. On the other hand, Kannai's main result asserts that the stronger archimedean principle, $(-T) \cap \lim^{\Omega} T = \emptyset$, is sufficient. (1) From a construction in Section 2, it follows that Ω cannot be replaced by any countable ordinal. Indeed, for $1 < \beta < \Omega$ there exists an \mathbf{x}_0 -dimensional preference relation \succeq_{β} such that $(-T) \cap \lim^{\alpha} T = \emptyset$ for all $\alpha < \beta$, and yet $\lim^{\beta} T = E$. The latter condition implies that for each element y of the space E of alternatives and for each linear transformation v of E onto \mathbb{R}^n , every element of \mathbb{R}^n appears as the value v(x) for some alternative x which is preferred to y. (2)(3) Thus in a very strong sense, we may say that no useful information about \succeq can be conveyed by means of v. (In particular, the only function v satisfying condition (6) is the identically zero function.)

2. Iteration of the 'lin' operation. When X is a convex subset of a linear space E, let us define the order of X (ord X) as the smallest ordinal number α such that $\sin^{\alpha}X = \lim X$ for all $\beta > \alpha$, and the level of X (lev X) as the set of all ordinal numbers β such that there exists a convex set C with $\lim^{\beta}C = X$ but $\lim^{\alpha}C \neq X$ if $\alpha < \beta$. It is known that ord $X \leq \Omega$ [11,13], and that dim $E \leq \aleph_0$ if and only if ord $X < \Omega$ for all convex $X \subset E$; indeed, if dim $E = \aleph_0$ then every countable ordinal is realized as ord X for some convex $X \subset E$ [11,14]. A new and simpler proof of the latter result is given below, and a question raised in [11] is answered by showing that lev E consists of all countable ordinals when E is \aleph_0 -dimensional. In addition, the construction promised in Section 1 is carried out.

$$\rho(x,y) = \int_0^1 \frac{|x(t) - y(t)|}{1 + |x(t) - y(t)|} dt$$

(corresponding to convergence in measure). Then dim $E=2^{\aleph_0}$, but E is a complete separable metric linear space. Say that $x \geq y$ provided $x(t) \geq y(t)$ for almost all $t \in [0, 1]$. Then \geq is a pure preference relation, and in fact $(-T) \cap \lim^n T = \emptyset$. Nevertheless, $vT_y = \Re^n$ for each $y \in E$ and each linear transformation v of E onto \Re^n . This follows from the fact that E does not admit any nonzero linear form which is nonnegative on T [8].

⁽¹⁾ Here Ω is the first uncountable cardinal. Kannai's Theorem B asserts that a utility function exists if $(-T) \cap cl T = \emptyset$, where cl T is the closure of T in a certain topology τ_k for E. It is known [4, 7] that $\lim^{\Omega} T$ is the closure of T in the finite topology τ_f for E, where a set is τ_f -open provided its intersection with each finite-dimensional flat F in E is open in the natural topology for F. But for dim $E \leq \aleph_0$, it can be verified that Kannai's topology τ_k is identical with the finest locally convex topology τ_c for E, and it is known [4, 7] that τ_c is identical with τ_c

with τ_f .

(2) For let $T_y = \{x : x > y\}$. Then $T_y = T + y$, and hence vT_y is a subset of \Re^n with $\lim^{\beta} vT_y = \Re^n$. Since vT_y is convex, this implies that $vT_y = \Re^n$.

⁽³⁾ For another example of this phenomenon, let E be the space of all (equivalence classes in the usual way, of) measurable functions on [0, 1], topologized by means of the metric

A convex cone K will be called proper provided $K \cap -K \subset \{0\}$.

LEMMA. If dim $E < \aleph_0$ and the convex cone K in E is an F_{σ} set with $0 \in K$, then K is the union of an increasing sequence of closed convex cones.

Proof. Let $L = K \cap -K$, a linear subspace of E, and let $K^+ = K \sim L$, a proper convex cone. Then K^+ is an F_{σ} set and hence is the union of an increasing sequence $Z_1 \subset Z_2 \subset \cdots$ of compact sets. For each i, the convex hull of Z_i is a compact convex subset of K^+ and hence the set $[0, \infty[$ con Z_i is a proper closed convex cone in K. For each i, let $J_i = L + [0, \infty[$ con Z_i . Clearly K is the union of the J_i 's, and it can be verified that each J_i is closed. (Use 7.5 of [6] or 2.1 of [9]).

LEMMA Suppose that dim $E = \aleph_0$, and that K is an infinite-dimensional convex cone in E with $0 \in K$. Suppose that K is closed or that K is proper and an F_{σ} set (in the finite topology for E). Then there exist a linearly independent sequence b_1, b_2, \cdots of points of K and an increasing sequence $K_1 \subset K_2 \subset \cdots$ of closed convex cones in K such that $K = \bigcup_{i=1}^{\infty} K_i$ and always

$$\{b_1, \dots, b_n\} \subset K_n \subset L_n$$

where L_n is the linear hull of $\{b_1, \dots, b_n\}$.

Proof. Let L denote the linear hull of K, whence K contains a basis $\{b_1, b_2, \cdots\}$ for L. For each n, let $C_n = K \cap L_n$. If K is closed, we simply take $K_n = C_n$. Suppose, then, that K is proper and is an F_{σ} set. It follows from the preceding lemma that for each n, C_n is the union of an increasing sequence $C_n^1 \subset C_n^2 \subset \cdots$ of closed convex cones such that $\{b_1, \cdots, b_n\} \subset C_n^1$. For each n, let

$$K_n = C_1^n + C_2^n + \cdots + C_n^n.$$

Then it is evident that K is the union of the K_i 's, and since K is proper each of the cones K_n must be closed [9].

THEOREM. Suppose that E and K are as in the preceding lemma. Then there exists a proper convex cone K' such that K' is an F_{σ} set, $0 \in K' \subsetneq K$, and $\lim K' = K$.

Proof. Let the closed convex cones K_i be as in the lemma, and for each i let $K_i' = K_i +]0$, $\infty [b_{i+1} \cdot \text{Let } K' = \{0\} \cup \bigcup_{i=1}^{\infty} K_i'$. Since $K_1' \subset K_2' \subset \cdots$ and since each set K_i' is a convex cone, it is evident that K' is a convex cone. Also, we have

$$K = \bigcup_{i=1}^{\infty} K_i \subset \bigcup_{i=1}^{\infty} \lim K'_i \subset \lim K',$$

and it remains only to show that $\lim K' \subset K$. Consider an arbitrary point x of $\lim K'$. There exists $y \in K'$ such that $]x, y] \subset K'$, and then for each i there exist r(i), $k_i \in K_{r(i)}$, and $\tau_i > 0$ such that

$$\left(1-\frac{1}{i}x\right)+\frac{1}{i}y=k_i+\tau_ib_{r(i)+1}.$$

Further, there exists n such that $\{x, y\} \subset L_n$, whence r(i) < n for all i and $k_i + \tau_i b_{r(i)+1} \subset K_n$. Since K_n is closed, it follows that $x \in K_n \subset K$ and the proof is complete.

COROLLARY. If X is an \aleph_0 -dimensional convex F_{σ} set, then lev X includes all finite ordinal numbers.

Proof. We may assume that the affine hull H of X is a hyperplane in $E \sim \{0\}$, where E is an \aleph_0 -dimensional linear space. Let $K^0 = \{0\} \cup]0, \infty[X, \operatorname{an} F_{\sigma} \operatorname{proper} \operatorname{cone} \operatorname{in} E$, and consider an arbitrary finite β . By successive applications of the Theorem we can produce F_{σ} proper convex cones K^{α} such that always $\operatorname{lin} K^{\alpha} = K^{\alpha-1}$ and

$$K^0 \stackrel{\supset}{\neq} K^1 \stackrel{\supset}{\neq} K^2 \stackrel{\supset}{\neq} \cdots \stackrel{\smile}{\neq} K^{\beta}.$$

Let $X^{\beta} = K^{\beta} \cap H$. Since $\lim_{\beta \to 0} K^{\beta} = K^{0}$ but $\lim_{\beta \to 1} K^{\beta} \neq K^{0}$, it follows that $\lim_{\beta \to 1} X^{\beta} = X$ but $\lim_{\beta \to 1} X^{\beta} \neq X$. Thus $\beta \in \text{lev } X$ and the proof is complete.

COROLLARY. Suppose that X is an \aleph_0 -dimensional convex F_{σ} set with $0 \in X$. If X is the direct sum of \aleph_0 isomorphs of X, then lev X consits of all countable ordinal numbers.

Proof. Let \mathscr{B} denote the set of all ordinal numbers β for which there exists a convex F_{σ} set Y having $\lim^{\beta} Y = X$ but $\lim^{\alpha} Y \neq X$ if $\alpha < \beta$. From the proof of the preceding corollary, it follows that $[1, \omega] \subset \mathscr{B}$ and that $\beta \in \mathscr{B}$ implies $\beta + 1 \in \mathscr{B}$. From a result in [11] (p. 233) in conjunction with the "direct sum" property of X, it follows that if $\beta < \Omega$ and $\alpha \in \mathscr{B}$ for all $\alpha < \beta$, then $\beta \in \mathscr{B}$. Hence lev $X = [0, \Omega]$ by transfinite induction.

COROLLARY. If E is a linear space, then

$$\operatorname{lev} E = \left\{ \begin{array}{ll} \emptyset & \text{if dim } E < \aleph_0 \\ \\ \left[1, \Omega\right[& \text{if dim } E = \aleph_0 \\ \\ \left[1, \Omega\right] & \text{if dim } E > \aleph_0 \end{array} \right\} .$$

COROLLARY. Suppose that E is an \aleph_0 -dimensional linear space and β is an ordinal number with $1 < \beta < \Omega$. Then there exists a pure preference relation \gtrsim on E such that the convex cone $T = \{x: x > 0\}$ is an F_{σ} set and $\lim^{\beta} T = E$, although $(-T) \cap \lim^{\alpha} T = \emptyset$ for all $\alpha < \beta$.

Proof. Let \mathscr{B} denote the set of all ordinals $\beta \in]1,\Omega[$ for which the statement is true. We note first that $2 \in \mathscr{B}$. Indeed, let $\{b_1,b_2\cdots\}$ be a basis for E and let K be the set of all points x of the form $x = \sum_{i=1}^n \lambda_i b_i$ with $\lambda_n > 0$. (That is, the last nonzero coordinate of x is positive.) Then K is a proper convex cone and is an F_{σ} set, so the Theorem guarantees the existence of an F_{σ} convext cone K' such that $\lim K' = K \cup \{0\}$.

Let $x \geq y$ provided $x - y \in K' \cup \{0\}$. Then \geq is a pure preference relation for which T = K', $\lim^1 T = K \cup \{0\}$, and $\lim^2 T \supset \lim K = E$. It follows that $2 \in \mathcal{B}$.

Now suppose that $2 < \gamma < \Omega$ and that $\beta \in \mathcal{B}$ whenever $1 < \beta < \gamma$. If $\gamma - 1$ exists, then $\gamma - 1 \in \mathcal{B}$ and it follows from the Theorem that $\gamma \in \mathcal{B}$. Suppose, then, that γ is a limit ordinal, and for $1 < \beta < \gamma$ let E_{β} be an \aleph_0 -dimensional linear space and \gtrsim_{β} a pure preference relation on E_{β} such that T_{β} is an F_{σ} set, $\sin^{\beta} T_{\beta} = E_{\beta}, \text{ and } (-T_{\beta}) \cap \sin^{\alpha} T_{\beta} = \emptyset \text{ for all } \alpha < \beta. \text{ We may assume without loss}$ of generality that E is the direct sum of the spaces E_{β} . Let T_{γ} be the direct sum of the convex cones T_{θ} , and say that $x \geq y$ provided $x - y \in T_{\gamma} \cup \{0\}$. Then the easily verified properties of T_{γ} show that $\gamma \in \mathcal{B}$.

It now follows by transfinite induction that $\mathcal{B} =]1, \Omega[$, so the proof is complete.

- 3. Unsolved problems. (a) If C is a convex set in an x_0 -dimensional linear space E, then lin C is an F_{σ} set. It follows, for a convex set $X \subset E$, that lev $X = \emptyset$ unless X is an F_{σ} set. We have seen that lev $X \supset [1, \omega]$ for every infinite-dimensional convex F_{σ} set in E, while for certain sets of this sort, lev $X = [1, \Omega]$. Is the latter equality valid for every x_0 -dimensional convex F_{σ} set X?
- (b) Let E and T be as in footnote(3), so that vT = F whenever v is a linear transformation of E onto a finite-dimensional linear space F. Is the same conclusion valid (for this particular choice of E and T) when dim $F = \aleph_0$?(4)

REFERENCES

- 1. R. J. Aumann, Utility theory without the completeness axiom, Econometrica 30 (1962), 445-462 and 32 (1964), 210-212.
 - 2. P. C. Hammer, Maximal convex sets, Duke Math. J. 22 (1955), 103-106.
- 3. M. Hausner, Multidimensional utilities, in Decision Processes, edit. by Thrall, Coomb and Davis, Wiley, New York, (1954) 167-180.
- 4. S. Kakutani and V. Klee, The finite topology of a linear space, Arch. Math. 14 (1963) 55-58.
- 5. Y. Kannai, Existence of a utility infinite dimensional partially ordered spaces, Israel J. Math. 1 (1963), 229-234.
 - 6. V. Klee, Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
 - 7. ——, Convex sets in linear spaces. III, Duke Math. J. 20 (1953), 105-112.

(i) 1 ≤ card Φ ≤ ℵ₀;
(ii) for each x ∈ E, φ(x) = 0 for all but finitely many φ ∈ Φ;
(iii) for each x ∈ T, either φ(x) = 0 for all φ or there exists φ' ∈ Φ such that φ'(x) > 0 but φ(x) = 0 for all φ < φ'.
The theorem in [10] is concerned with the structure of semispaces [2, 10], a notion which may be

employed to define various infinite-dimensional analogues of the lexicographic ordering in R*.

⁽⁴⁾ In this connection, the following consequence of a theorem in [10] (p. 58) may be useful If T is a convex cone in a linear space E and if E admits a linear transformation v onto a space F of countable dimension such that $vT \neq F$, then there is a linearly ordered set (Φ, \prec) of nonzero linear forms on E such that the following conditions are all satisfied:

1964] UTILITY FUNCTIONS AND 'LIN' OPERATION FOR CONVEX SETS	197
8. ——, Boundedness and continuity of linear functionals, Duke Math. J. 22(1955), 263-	-270.
9. ——, Separation properties of convex cones, Proc. Amer. Math. Soc. 6 (1955), 313-	-318.
10. —, The structure of semispaces, Math. Scand. 4 (1956), 54-64.	
11, Iteration of the "lin" operation for convex sets, Math. Scand. 4 (1956), 231-	-238.
12. —, On representing a reference relation by means of a set u ility funct	ions.
(to appear).	
13. O. M. Nikodym, On transfinite iterations of the weak linear closure of convex se	ts in
linear spaces. Part A. Two notions of linear closure, Rend. Circ. Mat. Palermo (ser. 2) 2 (1	953,)
85–105.	
14. ——, On transfinite iterations of the weak linear closure of convex sets in linear sp	oaces

Part B. An existence theorem in weak linear closure, Rend. Circ. Mat. Palermo (ser. 2) 3 (1954), 5-75.

University of Washington and Boeing Scientific Research Laboratories, Seattle, Washington, U.S.A.